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Abstract

Close-contact melting within a spherical capsule is investigated both numerically and analytically. A complete
mathematical model is solved numerically by utilizing the boundary ®xing method. The approximate approach

developed by Bareiss and Beer for the horizontal cylinder is applied to constructing an approximate mathematical
model of contact melting in a spherical capsule with a non-isothermal wall. The main characteristic scales and
dimensionless parameters which describe the principal features of the melting process are found. Due to the
presence of the small parameter in governing equations the perturbation method is implemented. As a result, simple

analytical solutions were found which describe close-contact melting inside the capsule with a non-isothermal wall
and account for the streamwise convection in the molten layer. The extensive validation of the analytical solution,
and its comparison with the numerical results, gives the proof of accuracy of the analytical solutions with estimated

error of 10±15%. This conclusion is of crucial importance for evaluating the real latent heat thermal energy storage
systems which contain thousands of capsules, since the simple closed-form solutions for a single capsule, used in the
mathematical modeling of such kind of complex systems, signi®cantly reduces the cost of numerical

computations. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The analysis of close-contact melting of a solid in
cavities is motivated by application in latent heat-of-
fusion thermal storage systems. This phenomenon was

studied by inclusion of density change during melting
of uncon®ned solids in horizontal cylindrical capsule,
numerically by Saitoh and Hirose [1], experimentally

by Katayama et al. [2], analytically and experimentally
by Bareiss and Beer [3]. Contact melting in a spherical
capsule was investigated numerically by Moore and

Bayazitoglu [4], Hoshina and Saitoh [5] and later, by

applying the technique proposed in [3], Bahrami and
Wang [6] and Roy and Sengupta [7] reported analytical
solutions. The general scheme for scale analysis of the
contact melting problem was proposed by Bejan [8].

Although the aforementioned investigations highlight
the main characteristics of contact melting in en-
closure, the e�ect of temperature variation along the

wall of the spherical capsule has not been analyzed,
and the tangential force convection in the molten layer
was neglected. Number of errors and confusing mis-

prints in a recently published paper dealing with con-
tact melting in non-isothermal cylindrical capsule [9] is
so excessive that it makes practically impossible neither
to use the presented result nor to estimate its correct-

ness. His phrase that `the time scale of this change is
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small compared with the heat transfer rate and liquid
¯ow rate' is very confusing and unclear, and no esti-
mations have been provided. The comparison with the

previous results for contact melting in a cylindrical
enclosure also was not provided.
In the present paper the excellent approximate

approach developed by Bareiss and Beer [3] is applied
for the mathematical modeling of contact melting in
the spherical capsule with non-isothermal wall. The lat-
ter condition was motivated by our experiments for

the real thermal energy storage systems. The results of
the experiments indicate that isothermal wall of the
capsule never exists in practice. Since the temperature

overfall along the cavity wall may cause the substantial
temperature gradient in the molten layer in the tangen-

tial direction, therefore, the convective term in the
energy equation is preserved in our model.

2. System model and analysis

A schematic sketch of melting process within a
spherical enclosure is illustrated in Fig. 1. A sphere of
the radius R containing phase-change material initially
is in the solid phase and entirely at melting point Tm.

The wall temperature is instantly raised to temperature
Tw which is higher than Tm. As a result, inward melt-
ing of the solid starts. Owing to its higher density the

un®xed solid bulk acquires vertically downward speed.
The downward motion of the solid core is character-

Nomenclature

A parameter de®ned in Eqs. (24) and (25)
Ar Archimedes number=rlgR

3(rsÿrl)/m 2

a coe�cient in capsule's wall temperature

equation Tw=1+a sin2 y
B parameter de®ned in Eqs. (24) and (25)
Cd molten layer thickness scale to capsules

radius ratio=d0/R
Cr solid-to-liquid density ratio=ys/yl
cl liquid speci®c heat

fl, f2 functions determined in Eq. (23)
g gravitational acceleration
hm latent heat of melting
kl thermal conductivity of liquid

M molten mass
Mtot total molten mass
Pr Prandtl number=clm/kl
p liquid pressure
p surplus liquid pressure=p ÿ 3(cos y+1)/

4(Crÿ1)
p0 characteristic pressure determined in Eq.

(6)
qw heat ¯ux on wall of capsule

qm heat ¯ux on the melting solid±liquid inter-
face

R radius of capsule
r polar coordinate, as in Fig. 1

s shift of reference point ®xed in solid core
Ste Stefan number=cl(Tw0ÿTm)/hm
T dimensionless liquid temperature deter-

mined in Eq. (5)
Tl dimensional liquid temperature
Tm melting point

Tw dimensionless wall temperature
Tw0 reference wall temperature (temperature at

the point y=0)

u0 scale for tangential velocity determined in
Eq. (6)

ux dimensionless transverse velocity deter-

mined in Eq. (5)
uZ dimensional tangential velocity determined

in Eq. (5)

x dimensionless variable=(Rÿr )/d0

Greek symbols
a thermal di�usivity of liquid
d dimensionless molten layer thickness

d0 scale for molten layer thickness determined
in Eqs. (6)

y polar angle, as shown in Fig. 1

ya polar angle which indicates contact melting
area, as shown in Fig. 1

m dynamic viscosity

rl density of liquid
rs density of solid
t dimensionless time
t0 time scale as determined in Eq. (6)

tm time required to complete melting of solid
core

Superscript
� dimensional quantity

Subscripts
l liquid
m melting

s solid
w wall of the capsule
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ized by the time-dependent shift of a material-®xed
reference point, which is chosen to be the center of the

originally, spherical core. The motion of the solid bulk
is accompanied by generation of liquid at the melting

interface and the liquid is squeezed up through a
narrow gap between the melting surface and the wall

of the capsule, to the space above the solid.
Conventionally, the solid-liquid interface can be

divided into two parts as denoted in Fig. 1 by the time

dependent value of the polar angle ya: a bottom inter-
face (yYya) which represents the close-contact melting

area where the most intensive melting occurs, and the
upper interface where much slower `latent' melting

takes place.
The complete mathematical model of the combined

close-contact and natural convection melting inside a

spherical capsule is presented in [5]. The results
obtained in this study show that the melting process

exhibits an unsteady behavior only over the ®rst few
seconds from the beginning of melting. It was revealed

that melting at the upper solid surface was approxi-
mately 10±15% of total melt. Moreover, the shape of

the upper interface does not change and can be well
approximated by a circular arc with invariable curva-

ture throughout the entire process. The latter was also
proved experimentally by Bareiss and Beer [3] who

considered melting in a horizontal capsule. It was dis-

covered by the aforementioned investigations that the
thickness of the molten layer d in the close-contact

area is considerably smaller than the capsule radius R.
On the basis of these conclusions, the primary assump-

tions made in the present study are the following:

1. Melting at the upper surface of the solid core is neg-
ligibly small [3,5].

2. The process is quasi-steady. Therefore, the acting
forces are balanced, when the vertical resultant of

the pressure force in the liquid layer between the
bottom interface and the heated wall of the capsule,
is equal to the value of the di�erence between the

gravitational and buoyancy forces of the solid bulk.
The velocity pro®le in the liquid ®lm is also quasi-
steady and changes only with the ®lm thickness

which varies with time.
3. The ¯ow in the capsule is axisymmetric around the

vertical axis of the sphere and two-dimensional

spherical polar coordinate system (r, y ) can be
employed.

4. Since the thickness of the liquid layer in the close-
contact area is very small relative to the dimension

of the sphere, the lubrication theory approach can
be implemented for mathematical modeling of heat
and mass transfer processes at the bottom of the

capsule.

2.1. Governing equations

After the proper scale analysis of the complete math-

ematical model of melting process inside the capsule,
presented for instance in [5], the main characteristic
scales and dimensionless parameters which describe the
principal features of the melting process, were found.

Among the most important values to be mentioned is
a parameter

Cd �
�

3amSte
4R3g�rs ÿ rl�

�1=4
which represents [5] the ratio of the characteristic scale
for the molten layer thickness to the radius R of the

capsule. Parameter Cd varies in the range of 10ÿ3±10ÿ2

for di�erent phase change materials used in thermal
storage systems. Accounting for the presence of this

small parameter, the model was simpli®ed by neglect-
ing the terms of the order O(Cd). By the proper non-
dimensionalizing of the momentum and energy

equations and boundary conditions, a small parameter
Cd has appeared as a coe�cient in front of some terms
of these equations. The terms which are multiplied to
this parameter have the order of O(Cd) and can be

considered as neglectfully small and omitted in com-
parison with those ones that have order of O(l) and
are re®ned in the equations. For instance the inertial

terms in the momentum equation in theta direction
have the order of O(Cd) and therefore neglected in the
viscous part of this equation the derivative of u with

respect to theta of the second order has the higher
degree of smallness and has multiplicity of C 2

d and also
neglected. In the momentum equation in r-direction all

Fig. 1. A schematic sketch of close-contact melting in a

spherical capsule.
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the terms except the pressure have the multiplicity of
Cd or more high degree of smallness that is why they

are omitted. In the energy equation the dissipative part
has the multiplicity of Cd and therefore neglected, due
to the same reasons the second order derivative of tem-

perature with respect to theta is also omitted. As a
result, the dimensionless mass conservation, momen-
tum and energy equations governing heat and mass

transfers in a molten layer under the solid bulk pressed
by its own weight to the capsule wall, are converted to
the following form:

@ux
@x
� 1

sin y
@

@y
�uy sin y� � 0 �1�

@p

@y
� @ 2uy
@x 2
ÿ 3 sin y

4�Cr ÿ 1� �2�

Ste

�
ux
@T

@x
� uy

@T

@y

�
� @ 2T

@x 2
�3�

The momentum equation in the r-direction reduces to
@p/@x = 0, hence p is a function of one independent

variable y.
The dimensionless Stefan condition on the solid±

liquid interface x=d yields

ds

dt
cos y � ÿ@T

@x

����
x�d
: �4�

The dimensionless variables in Eqs. (1)±(4) are chosen
as follows:

ux � t0u�x
2RCr

, uy � u�y
u0

, d � d�
d0

, t � t�
t0

,

s � s�
2R

, x � Rÿ r

d0
, T � T1 ÿ Tm

Tw0 ÿ Tm

,

p � p�
p0

,

�5�

where t0, u0, p0 and d0, are the initially unknown scales
for time of melting, tangential velocity, pressure, and

thickness of the molten layer, respectively. These
values found over the scale analysis are

t0 � 2R2CdCr

aSte
, u0 � aSte

RC 2
d

, d40 �
3R4Ste

4ArPr
,

p0 � 4

3
Rg�rs ÿ rl�,

�6�

where

Cr � rs=rl, Ar � rlgR
3�rs ÿ rl�=m2,

Pr � clm=kl:
�7�

Nondimensional equation of the force balance [7]
between the load exerted by the solid core bounded by

spherical surfaces on the thin liquid layer and stresses
in this layer with an accuracy of O(Cd) is

2

�ya

0

p sin y cos y dy

� 1ÿ 3

2
s� s3

2
� 3

2�Cr ÿ 1�
�ya

0

�1� cos y� sin y

cos y dy, �8�

where at the exit point of the close-contact area

p�ya� � 3�1� cos ya�
4�Cr ÿ 1� :

2.2. Analytical solution

Integrating Eq. (2) twice with respect to x and
accounting for no-slip conditions on the both solid
wall and lower melting interface, gives

uy � 1

2

d �p

dy
x�xÿ d�, �9�

where

�p � pÿ 3 cos y
4�Cr ÿ 1� :

Integration of Eq. (1) over the interval (0, d ) provides
a formula for the pressure gradient in the liquid as

d �p

dy
� ÿ6 sin y

d3
ds

dt
: �10�

Combining Eqs. (9) and (10), the velocity distribution

in the molten layer can be rewritten as follows

uy � 3 sin y
d

ds

dt

�
x

d

��
1ÿ x

d

�
: �11�

Integrating the energy Eq. (3) across the molten layer
(0, d ) and using the mass conservation Eq. (1), the fol-

lowing heat balance integral equation is obtained

Ste

sin y
@

@y

 �d
0

uyT sin y dx

!
� qw ÿ qm, �12�

where qw and qm are heat ¯uxes on the capsule wall
and melting surface, respectively. Approximating the
temperature pro®le in the molten layer by the third-
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order polynomial and imposing the obvious boundary
conditions on the wall of the enclosure

x � 0, T � Tw,
@ 2T

@x 2
� 0 �13�

and on the solid±liquid interface

x � d, T � 0,
@T

@x
� ÿcos y

ds

dt
�14�

leads to

T � Tw

2

 
2ÿ 3

�
x

d

�
�
�
x

d

�3
!

� d
2

ds

dt
cos y

 
1ÿ

�
x

d

�2
!�

x

d

�
:

�15�

Substituting the formulae (11) and (15) into Eq. (12)
gives a di�erential equation for the unknown thickness
of the molten layer d=d(y )

Sted
60 sin y

ds

dt
d

dy

�
sin2 y

�
7Tw � 3d

ds

dt
cos y

��

� Tw ÿ d
ds

dt
cos y: �16�

As was already mentioned, the derivation of the sim-
pli®ed mathematical model presented above is based

on the fact that parameter Cd=d0/R010ÿ3ÿ10ÿ2 and
therefore the values of O(Cd) can be ignored. The sim-
pli®ed model has another small parameter; Stefan
number. For all possible situations and variety of the

phase change materials, Ste < 1. The latter allows to
implement the perturbations method.
Solution of Eq. (16) is sought in the form of an

asymptotic series

d � d1 � d2Ste� d3Ste2 � d4Ste3 � � � � : �17�

Substituting series (17) into Eq. (16) and collecting the
terms with parameter Ste of the equal power leads to

�Ste�0: Tw ÿ d1
ds

dt
cos y � 0, �18�

�Ste�1:

d1
60 sin y

d

dy

�
sin2 y

�
7Tw � 3d1

ds

dy
cos y

��
� ÿd2 cos y:

�19�

More bulky equations for d3, d4, d5, etc., which also
can be readily obtained, are not presented here since
the Stefan number is very small and in the majority of

applications, the second order approximation is quite
su�cient for the further analysis. Therefore, using Eqs.

(18) and (19), the series (17) leads to the following ap-
proximate correlation:

d � Tw

ds

dt
cos y

�
1ÿ Ste

3 sin 2y
d

dy
�sin2 yTw�

�O�Ste2�
�
:

�20�

Substituting d, de®ned by Eq. (20), into Eq. (10) and

neglecting the terms of O(Ste 2), yields

d �p

dy
� ÿ6 sin y cos3 y

T 3
w

�
ds

dt

�4�
1� Ste

sin 2y
d

dy
�sin 2

yTw�
�
:

�21�

With regard to this equation and using the kinematic
relationship; cos ya=s, an expression for the down-
ward velocity of the solid bulk ds/dt can be derived

from the force balance Eq. (8) as follows:

�
ds

dt

�4

�
4

3

�
1ÿ 3

2
s� s3

2

�
�arccos s

0

sin3 2y
T 3

w

�
1� Ste

sin 2y
d

dy
�sin2 yTw�

�
dy
:

�22�
According to our measurements [10] the wall tempera-
ture distribution Tw can be estimated by Tw=1+a sin2

y, where 0 R y R ya R p/2 and parameter a is selected
from the experiment. In that experiment it was found
that parameter a may vary from 0 to 0.4 and can be

approximately chosen as 0.2. In this paper we vary the
parameter a in order to investigate how the distri-
bution of the wall's temperature in¯uences the melting
process. Based on the data provided in [10] parameter

a (is approximately equal to) 0.2. In this case the inte-
gral in the right-hand side of the Eq. (22) can be
expressed as elementary functions and Eq. (22) leads

to

ds

dt
�
(

1ÿ 3s=2� s3=2

6� f1�s� � � f1�s� � af2�s��Ste�

)1=4

, �23�

where

f1 � 1

2a2

"
�1ÿ s2��2� a�a� 3��1ÿ s2��

2�1� a�1ÿ s2��2

ÿ ln�1� a�1ÿ s2��
a

#
,
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f2 � 1

2a3

"
�s2 ÿ 1��6� 11a� 5a2 ÿ 9as2 ÿ 7a2s2 � 2a2s4�

�1� a�1ÿ s2��2

� 2�3� a� ln�1� a�1ÿ s2��
a

#
:

Substituting these analytical expressions for the dimen-

sionless melting rate into Eqs. (11), (15), (20) and (21),
leads to the closed-form solutions for the dimensionless
molten layer velocity, temperature, thickness and press-

ure gradient, respectively.
In order to obtain a simple, but nevertheless accu-

rate analytical solution of Eq. (23), and to express the
melting time in the elementary functions, the inverse of

the quantity in the right-hand side of Eq. (23) can be
substituted with the vanishing error by a ®rst-order
polynomial f(s )=a1s+a0. The introduction of this ap-

proximate but adequate formula is based on the results
provided by Bariess and Beer [3], Moallemi et al. [11],
Bahrami and Wang [6] and Roy and Sengupta [7].

According to their results the parabolic polynomial is
well ®tted to the melting time curve t=t(s ), therefore,
the linear pro®le can be chosen for its derivative dt/ds.
The coe�cients a1 and a0 can be obtained by using the

values of the function dt/ds=f(s ) in the points s = 0
and s = l. Taking the limits in Eq. (23) for s4 0 and
s4 1 yields

lim
s41

f �s� �
���
2
p
�1� Ste=4� �O�Ste2�, �24�

lim
s40

f �s� � A� �A� B �Ste=4�O�Ste2�, �25�

where

A �
�

3

2a3

�1=4

�a� a=�1� a� ÿ 2 ln�1� a��1=4,

B �
�

24

1� a

�1=4ÿ6aÿ 5a2 � �6� 8a� 2a2� ln�1� a�
�a�2a� a2 ÿ 2�1� a� ln�1� a���3=4 :

Eqs. (24) and (25) lead to

dt
ds
� ��

���
2
p
ÿ A� � �

���
2
p
ÿ Aÿ B �Ste=4�s� A� �A

� B �Ste=4: �26�

Integration of Eq. (26) with the obvious boundary con-
dition s(0)=0 results in

t � ��
���
2
p
ÿ A� � �

���
2
p
ÿ Aÿ B �Ste=4�s2=2� �A

� �A� B �Ste=4�s: �27�

The entire mass is molten when s= 1 or tm=t(1)

tm � �
���
2
p
� A�=2� �

���
2
p
� A� B �Ste=8: �28�

Dividing Eq. (27) by Eq. (28) leads to a useful relation-

ship for t/tm which represents the fraction of time
elapsed relative to the time required for complete melt-
ing, expressed in terms of the shift distance s of the
solid. Apparently, the value of the relative dimension-

less time t/tm=1 corresponds to the complete melting
of the solid core.
In this particular case, when the Stefan number is

very small, for instance Ste < 0.1, the terms in the
Eqs. (20)±(27), which are multiplied by Ste can be neg-
lected. Physically, it means that convection in the tan-

gential direction is ignored. The latter assumption
leads to the following simpli®ed relationships for the
thickness of the molten layer, melting rate and melting

time, respectively;

d � Tw=

�
ds

dt
cos y

�
, �29�

ds

dt
�
 
1ÿ 3s=2� s3=2

6f1�s�

!1=4

, �30�

t � �
���
2
p
ÿ A�s2=2� As: �31�

3. Results and discussion

Among the di�erent phase change materials used in
the thermal energy storage systems, n-octadecane is of

most frequent use. Physical properties of this material
are well documented and, for example, can be detected
in [5±7]. Even though numerical computations pro-
vided below are for n-octadecane melting conditions,

general conclusions can be drawn. The ratio of the
characteristic thickness of the molten layer to the
radius of the capsule is given by

Cd � d0
R
�
�

3Ste

4ArPr

�1=4

:

The thickness of the molten layer therefore is
decreased by reducing the viscosity and temperature

di�erence Tw0ÿTm, and by increasing of the density
di�erence rsÿrl, respectively. Since the phase change
material in the capsule is chosen, in our case it is n-

octadecane, the only controlling parameter is charac-
teristic temperature of the wall Tw0 which a�ects the
Stefan number. But even though the smaller Stefan

numbers provide the decrease of the molten layer
thickness, the dimensionless melting time which can be
determined as
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Fo0 � t0a
R2
� 2Cr

Ste3=4

�
3

4ArPr

�1=4

will increase. On the contrary, the inverse quantity-the
characteristic melting rate 2R/t0 increases with the
increase of the Stefan number.

In order to study the in¯uence of the temperature
distribution Tw along the wall of the capsule, a series
of computations for di�erent variations of temperature
were carried out. Temperature on the wall was speci-

®ed by equation Tw=1+a sin2 y, where the coe�cient
a determines a temperature di�erence along the wall
between the stagnation point y=0 and the end point

y=ya of the close-contact area. The analytical sol-
utions for the dimensionless melting rate ds/dt as a
function of the solid core shift are presented in Fig. 2.

The computed results illustrate the in¯uence of the
temperature distribution along the wall of the capsule.
More stronger increase of the wall temperature

(a= 0.4 or furthermore a = 0.8) leads to a higher
melting speed. Solid line corresponds to the ®rst order
approximation when d=d1 and the convective term in
the energy equation is ignored. These computations

based on Eq. (30) show that this rough approximation,
which does not account for heat out¯ow from the mol-
ten layer, results in exaggeration of the melting speed.

The similar conclusions can be made by inspecting Fig.
3 which presents the variation of the solid core travel
distance with time elapsed. Curves 1, 2 and 3 indicate

that the time required for melting the solid core is
shorter if the temperature Tw, increases along the wall
of the capsule. Ignoring the streamwise convection in

the liquid (curves 1, 2 and 3) results in predicting of
excessively high rates of melting.
Assuming that the capsule wall is isothermal (a = 0)

and heat transfer is dominated by heat conduction
across the molten layer only, and therefore Eq. (31) is
applicable, the comparison of the computed solid shift

as a function of the relative time with the results of
Bahrami and Wang [6] are provided. For these con-
ditions solutions are completely coincidental, as shown

in Fig. 4.
As it was mentioned above, experimental studies of

melting within capsules indicate that around 85±90%

of solid core is melted by close-contact melting with
the heated wall at the bottom of the capsule, and the
rest of the solid melts due to heat conduction and
natural convection in the upper liquid region in the

Fig. 2. Variation of the downward speed of solid ds/dt with

solid travel distance s.

Fig. 3. Solid travel distance s vs dimensionless time.

Fig. 4. Solid travel distance as a function of time elapsed rela-

tive to the time required for complete melting.
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capsule. In order to estimate theoretically the melting
process in the upper part of the capsule the complete
mathematical model available for instance in [5] and

[10] was solved numerically. The Boundary Fixing
Method [12] was used to handle the moving interface
between the liquid region and the solid region.

Numerical results roughly agree with analytical sol-
ution, which is obtained only for the bottom of the
capsule. However, there is some discrepancy, since
melting in the upper part in the analytical solution is

neglected. As it was expected a priori this discrepancy
does not exceed 15%. Fig. 5 shows the time history of
the liquid layer thickness at the bottom of the capsule.

According to the numerical solution of the complete
model [5,10], at the beginning of melting, the liquid
layer thickness rapidly increases, then it has a small

peak and after that it continues to grow. The small
peak corresponds to the so-called `Lifting
Phenomenon' ®rst pointed out by Saitoh and Moon
[13]. This is attributed to the sharp pressure increase at

the bottom of the enclosure almost instantly after the
beginning of melting. The analytical solution can not
catch this early-time e�ect since the quasi-steady model

is assumed. The further trend of liquid layer thickness
variation with time is similar for both numerical and
analytical solutions. Slightly bigger thickness of the

liquid layer in the later period of time obtained nu-
merically is attributed to the lower load exerted by the
solid core since its mass is reducing more rapidly due

to accounting for melting on the top of the capsule.

4. Conclusions

Conclusions drawn are the following:

1. Melting process of the un®xed solid in the spherical

capsule was researched both numerically and ana-
lytically. In contrast to the previous research our

mathematical model for close-contact region
accounts for the arbitrary temperature distribution
on the capsule's wall and both for heat transport by

conduction across the molten layer and convection
in the streamwise direction.

2. The approximate analytical solutions of close-con-

tact melting obtained by the perturbations technique
are found to be in good agreement with numerical
solution of the complete mathematical model. The

discrepancy in the results does not exceed 10±15%.
3. Computed results reveal that ignoring the e�ect of

streamwise convection in the liquid layer leads to
overestimating of melting rate.

4. The assumption of the constant temperature wall of
the capsule, in the previous research can lead to the
results which signi®cantly di�er from those obtained

for the real conditions of melting when the wall of
the capsule is non-isothermal.
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